Wednesday, April 6, 2011

DIODES

What are Diodes?

Diodes are semiconductor devices which might be described as passing current in one direction only. The latter part of that statement applies equally to vacuum tube diodes. Diodes however are far more versatile devices than that. They are extremely versatile in fact. It might pay you to review the topic of Electron theory and atoms
Diodes can be used as voltage regulators, tuning devices in rf tuned circuits, frequency multiplying devices in rf circuits, mixing devices in rf circuits, switching applications or can be used to make logic decisions in digital circuits. There are also diodes which emit "light", of course these are known as light-emitting-diodes or LED's. As we say diodes are extremely versatile.

Schematic symbols for Diodes

A few schematic symbols for diodes are:


This image is copyright © by Ian C. Purdie VK2TIP - schematic symbols for diodes
Figure 1 - schematic symbols for diodes

Types of Diodes

The first diode in figure 1 is a semiconductor diode which could be a small signal diode of the 1N914 type commonly used in switching applications, a rectifying diode of the 1N4004 (400V 1A) type or even one of the high power, high current stud mounting types. You will notice the straight bar end has the letter "k", this denotes the "cathode" while the "a" denotes anode. Current can only flow from anode to cathode and not in the reverse direction, hence the "arrow" appearance. This is one very important property of diodes.
The second of the diodes is a zener diode which are fairly popular for the voltage regulation of low current power supplies. Whilst it is possible to obtain high current zener diodes, most regulation today is done electronically with the use of dedicated integrated circuits and pass transistors.
The next of the diodes in the schematic is a varactor or tuning diode. Depicted here is actually two varactor diodes mounted back to back with the DC control voltage applied at the common junction of the cathodes. These cathodes have the double bar appearance of capacitors to indicate a varactor diode. When a DC control voltage is applied to the common junction of the cathodes, the capacitance exhibited by the diodes (all diodes and transistors exhibit some degree of capacitance) will vary in accordance with the applied voltage. A typical example of a varactor diode would be the Philips BB204G tuning diodes of which there are two enscapsulated in a TO-92 transistor package. At a reverse voltage Vr (cathode to anode) of 20V each diode has a capacitance of about 16 pF and at Vr of 3V this capacitance has altered to about 36 pF. Being low cost diodes, tuning diodes have virtually replaced air variable capacitors in radio applications today.
The next diode is the simplest form of vacuum tube or valve. It simply has the old cathode and anode. These terms were passed on to modern solid state devices. Vacuum tube diodes are mainly only of interest to restorers and tube enthusiasts.
The last diode depicted is of course a light emitting diode or LED. A led actually doesn't emit as much light as it first appears, a single LED has a plastic lens installed over it and this concentrates the amount of light. Seven LED's can be arranged in a bar fashion called a seven segment LED display and when decoded properly can display the numbers 0 - 9 as well as the letters A to F.

0 comments:

Post a Comment